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 High demand on voltage regulator (VR) currently requires VR manufacturers 

to improve their time-to-market, particularly for new product development. 

To fulfill the output stability requirement, VR manufacturers characterize the 

VR in terms of the equivalent series resistance (ESR) of the output capacitor 

because the ESR variation affects the VR output stability. The VR 

characterization outcome suggests a stable range of ESR, which is indicated 

in the ESR tunnel graph in the VR datasheet. However, current practice in 

industry manually characterizes VR, thereby increasing the manufacturing 

time and cost. Therefore, an efficient method based on multilayer neural 

network has been developed to obtain the ESR tunnel graph. The results 

show that this method able to reduce the VR characterization time by 

approximately 53% and achieved critical ESR prediction error less than 5%. 

This work demonstrated an efficient and effective approach for VR 

characterization in terms of ESR. 
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1. INTRODUCTION 

Most electronic products have an important power converter component called voltage regulator 

(VR). The VR converts the noisy and unstable direct current (DC) input supply (voltage and current) to a 

stable, constant, accurate, and load-independent DC output supply. The VR has high demand in recent years 

because of the emerging market of high-performance portable electronic devices with complex and integrated 

design. Furthermore, new applications, such as system-on-chip and Internet-of-things, require smart devices 

with tight power consumption specification [1], [2]. All the aforementioned products generally have a short 

time-to-market. Therefore, VR manufacturers must meet the high market demand without compromising the 

high-quality requirement [3]. 

One of the requirement is the VR ability to produce a stable output in various loading conditions. 

Particularly, VR should quickly react to any disturbances, such as during abrupt load current change, without 

generating excessive undershoot and overshoot. To ensure stability, a typical VR circuit requires an output 

capacitor, with optimal internal parasitic resistance, namely equivalent series resistance, ESR. Though the 

ESR is important to compensate the control loop inside the VR [4], [5], the variations in age and temperature 

increase the ESR and eventually cause VR output instability [6], [7]. It means that the VR is only stable in a 

limited ESR range, which is indicated in the datasheet in a special graph called ESR tunnel graph as shown in 

Figure 1. This ESR tunnel graph indicates the stable and unstable regions for a range of outputs or load 

currents and the ESR values of the capacitor. The critical points, such as the critical ESR and its 

corresponding undershoot, reside on the boundary between stable and unstable regions. This stability 

boundary must conform to the design specification. 
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Figure 1. ESR tunnel graph example 

 

 

Thus, in the VR design and quality assurance phases, it is necessary to investigate and characterize 

the stable ESR range for all possible load currents. During new product development and manufacturing, VR 

characterization in terms of ESR is a challenging task because the accurate stability boundary in the ESR 

tunnel graph is typically unknown. Different VR samples have unique ESR tunnel graphs as a result of 

variations in the manufacturing process. Since typically no prior mathematical model is provided by the VR 

manufacturers, the undershoot and overshoot are only accurately measured from the actual VR response 

during abrupt load current change, where the ESR and load current are iteratively configured [3]–[5]. This 

iterative process requires a large number of data that should be acquired and analyzed. In addition, current 

practice in industry manually characterize the VR in terms of stable ESR range. Consequently, current VR 

characterization takes a lot of time and high cost, due to iterative and manual process. 

Clearly, there is a need to speed up the VR characterization. One way to reduce the total 

characterization time is to limit the number of acquired data. As a consequent, there will be some missing 

data for certain loading condition. In this case, some questions may arise. For example, how to obtain the 

undershoot and overshoot for the remaining loading condition with missing data, furthermore no prior model 

is available? How reliable is the critical ESR extracted from the ESR tunnel graph for this missing data 

situation? Hence, an efficient and reliable VR characterization method in terms of stable ESR range, with 

limited acquired data, is required. 

Considerable research has been conducted to characterize the VR, but not specific in terms of ESR 

[8]. Most works in characterizing the VR require knowledge of the internal model of the VR [4], [5]. In most 

cases, manufacturers do not provide this internal model information. Given that the main challenge in VR 

characterization is to determine the capacitor ESR, the problem can also be considered as a capacitor 

condition monitoring (CM) problem, which typically monitors the capacitor characteristics such as 

capacitance and ESR in power converter application [6], [7], [9]–[15]. Although many works have been 

conducted, only a few studies have focused on the power converter packaged in integrated circuits. 

Furthermore, the main purpose is preventive maintenance, not for determining the stable range of capacitor 

ESR. 

Therefore, the black box approach using advanced algorithm based on the data collected during 

manual VR characterization is a promising research area, as well as artificial intelligence techniques such as 

neural network (NN) [11]. NN approach is suitable because it does not require VR internal model and 

external signal injection. Furthermore, the VR terminal voltages and currents are available for dataset 

development purpose to train the NN structure. The NN-based system design will be less complexity yet 

reliable. Besides, NN-based approach is widely applied in other engineering applications [16], [17]. 

 

 

2. RESEARCH METHOD 

The proposed efficient VR characterization in this work predicted the stable range of capacitor ESR 

using the multilayer NN-based approach. In this work, the NN approach was used with a reduced number of 

dataset from manual characterization results to achieve efficient VR characterization. The critical ESR values 

that reside on the stability boundary in the ESR tunnel graph were also predicted. The performance of the 

proposed method was eventually validated with the manual VR characterization results. The overall process 

is depicted in Figure 2. The process involves manual VR characterization, critical ESR benchmark search, 

dataset generation, NN training, critical ESR prediction using trained NN, and characterization time 

comparison. 
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Figure 2. Flowchart of the overall process 
 
 

2.1. Multilayer NN 

The multilayer NN used in this work consists of an input layer, a hidden layer, and an output layer 

[16]. The input layer receives the external input signals and redistributes these signals to the hidden layer. 

Then, the neuron weights in the hidden layer represent the significant features in the input signals. Finally, 

the output layer produces the output pattern of multilayer NN. 

Therefore, the weight in NN should be adjusted during the NN training phase to reduce the 

difference between the actual and desired outputs of multilayer NN. Given that many weights should be 

computed in NN, the back-propagation learning algorithm is used. Input signals are propagated through the 

network from the input layer to the hidden layer and eventually the output layer. Meanwhile, the error signals 

are propagated backward, starting from the output layer to the hidden layer. 

 

2.2. VR Selection 

In this work, LT1963A series VR from Linear Technology was selected because its datasheet has 

more description and information than those of other VR models manufactured by other VR manufacturers. 

Furthermore, Linear Technology provides the VR model libraries for most of their products together with the 

LTspice IV simulation software program, which is available online and can be downloaded from their 

website. 

 

2.3. Test Circuit Development 

LT1963A series VR has a number of models depending on its output voltage. One of these models 

is the adjustable-type VR model used in this work. Figure 3 displays the simplified internal architecture 

inside the adjustable-type VR in general. Typically, an adjustable-type VR has four terminals, namely, input 

(IN), output (OUT), adjustable (ADJ) and ground (GND) terminals. This type of VR has an internal series 

pass element, which is typically a PMOS transistor, an error amplifier, and a voltage reference. The error 

amplifier function senses any changes in the output voltage measured at the OUT terminal through feedback 

dividers, R1 and R2. 
 

 

 
 

Figure 3. Simplified internal architecture of the adjustable-type VR 
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The output voltage of the adjustable-type VR, VOUT, can be computed by analyzing the circuit in 

steady-state condition. In steady-state condition, equivalent voltages will be generated at both error amplifier 

inputs, and consequently, the capacitor will not discharge. Therefore, the steady-state output voltage, 

VOUT(SS), is the summation of voltages across R1 and R2. The current flowing through R1 is approximately 

equivalent to the current approaching the ADJ terminal, IADJ. Meanwhile, VR2 is equal to the voltage at the 

ADJ terminal, VADJ. Using voltage division at the ADJ terminal, 

 

VR2 = VADJ = (
R2

R1+R2
)VOUT       (1) 

 

Thus, VOUT(SS) becomes, 

 

VOUT(SS) = IADJR1 + (1 +
R1

R2
)VADJ       (2) 

 

Figure 4 shows the LT1963A test circuit implemented in this work with the output voltage, 

VOUT(SS), can be computed based on (2). As stated in the LT1963A datasheet, VADJ is 1.21 V and IADJ is 3 A 

at 25 C for the output voltage range between 1.21 V to 20 V. Therefore, the VR circuit shown in Figure 2 

produces VOUT(SS) of 4.9691 V. The output voltage tolerance is approximately 3% over the full operating 

temperature range. The datasheet also indicates that the suitable output capacitor is 10 F with maximum 

allowable ESR of 3 . 

 

 

 
 

Figure 4. LT1963A VR test circuit 

 

 

2.4. Dataset Development 

The dataset developed in this work was initially generated using the LTspice IV software from 

Linear Technology and processed using the MATLAB software from Mathworks. All further analyses, 

including dataset development, were executed in MATLAB with Neural Network Toolbox. The information 

in the dataset includes the input and output voltages and currents, stability condition, minimum and 

maximum output voltages, and load transient response undershoot and overshoot. 
 

2.5. Manual VR Characterization 

Prior to the NN-based VR characterization, we conducted manual VR characterization through 

circuit simulation in LTspice to collect a raw dataset and generate the baseline or benchmark for the 

subsequent process. The manual process of VR characterization uses the context of changing the load current 

and ESR values during circuit simulation. These values were manually incremented step by step. In manual 

VR characterization, the range of load current, IOUT, is from 0.1 A to 0.5 A, with 0.05 A increment. 

Meanwhile, the range of ESR is from 5 Ω to 100 Ω, with 5 Ω increment.  

Manual VR characterization was started by initializing the input voltage, VIN. Once the start time of 

characterization was recorded and the dataset was initialized, the VR circuit was simulated in LTspice for 

each IOUT and ESR. Circuit simulation in LTspice was fully controlled by MATLAB. In detail, a MATLAB 

program was developed to generate the circuit netlist file in the text file form. Circuit netlist file contains all 

circuit nodes and connection information, as well as component values such as capacitor’s capacitance and 

ESR. Then MATLAB is used to run the LTspice software to simulate the generated circuit netlist file. After 

LTspice simulation was completed, the circuit raw data was imported into MATLAB for further processing. 

In detail, after waiting for 1.5 s, IOUT was disturbed or changed abruptly by energizing the signal 

generator, Vs, before stopping the simulation 1.5 s later. Simultaneously, the VR output response comprising 
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output voltage, VOUT, and outpur current, IOUT, were acquired. Then, the minimum and maximum output 

voltages, VOUTmin
 and VOUTmax

, were also obtained. After that, the output voltage undershoot, VUS, and the 

RMS values of input and output voltages and currents (VINRMS
, VOUTRMS

, IINRMS
, IOUTRMS

) were computed. 

These values will be used as NN inputs during NN training in NN-based VR characterization.  

For each combination of IOUT and ESR value, the VR stability was determined. The VR stability 

was judged by checking whether the computed undershoot and overshoot are within the output voltage 

tolerance or not. However, practically, judging whether VOUTmin
 and VOUTmax

 are within the output voltage 

tolerance is sufficient to conclude that the VR is stable or unstable. Afterward, the ESR tunnel graph was 

plotted for each combination of IOUT and ESR together with its stability condition. The critical ESR values in 

manual VR characterization were determined for each IOUT. After all IOUT and ESR values have been 

characterized, the dataset was updated. Finally, the end time of characterization was recorded, and the total 

time of characterization was computed. 
 

2.6. NN Training 

This work applied NN in predicting the critical ESR to reduce the VR characterization time. The 

most important process is to train the NN structure and find the best configuration (inputs, training function 

and number of hidden nodes). In addition, the optimum number of datasets will also be determined. In this 

work, the NN target was the output voltage undershoot and the NN inputs were load current, ESR and other 

inputs as shown in Figure 5. Other inputs are based on the NN input combination options depicted in Table 1. 

These NN input combination were required to find the most significant features in terms of VR terminal 

voltages and currents that able to increase the NN prediction accuracy. For all NN input combination, four 

different number of hidden nodes were used, namely, 5, 10, 15 and 20 nodes. In addition, there were total 

180 data points in the original manual characterization dataset. 70% of the dataset was used for NN training. 

Meanwhile, 15% of the dataset was utilized for validation and 15% of the dataset was used for testing the 

trained NN structure. 

 

 

 
 

Figure 5. Block diagram of NN-based VR characterization 

 

 

Table 1. NN input combination options 
Option Input combination 

1 Initial load current, and ESR 

2 Initial load current, ESR, and RMS output current 

3 Initial load current, ESR, and RMS output voltage 
4 Initial load current, ESR, and RMS input current 

5 Initial load current, ESR, and RMS input voltage 

6 Initial load current, ESR, RMS input current, and RMS output voltage 
7 Initial load current, ESR, RMS input current, and RMS input voltage 

8 Initial load current, ESR, RMS input current, RMS input voltage, RMS 

output current, and RMS output voltage 

 
 

The first step in NN-based VR characterization is similar to that in manual characterization, which is 

to record the start time of characterization. Then, the manual characterization dataset was imported into 

MATLAB. After training the NN with different configurations (NN inputs, training function and number of 

hidden nodes) and a dataset reduction factor, the best NN configuration was determined based on the 

minimum prediction error. For each configuration, NN was trained using a reduced number of manual VR 

characterization datasets. Simultaneously, the undershoot prediction performance metrics obtained for every 

configuration was computed. This process was repeated 30 times. 
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2.7. Critical ESR Prediction 

The best configuration values were then used to train back NN. After completing the NN training 

phase, the critical ESR for each load current was predicted. However, based on Table 1, options no. 2 to 8 

include other inputs, such as unknown RMS values of the input and output of currents and voltages. 

Therefore, these RMS values should be interpolated first. The critical ESR prediction started by determining 

the initial critical ESR based on the outcome of the trained NN. Then, refined ESR increment was 

implemented to produce a new set of critical ESR candidates based on the initial critical ESR range. 

Subsequently, the trained NN was used to predict the undershoot value for each load current and critical ESR 

candidate together with another interpolated input, if any exists. Afterward, the VR stability was determined. 

The last critical ESR candidate that produces a stable condition was selected as the critical ESR for that 

particular load current. Then, the ESR tunnel graph for NN-based VR characterization was plotted. Finally, 

the stop time of characterization was recorded, and the total time of characterization was computed. 
 
 

3. RESULTS AND ANALYSIS 

3.1. Manual VR Characterization Results 

The main aim of this work is to investigate an efficient method to characterize VR in terms of stable 

ESR range. In other words, the purpose is to find the critical ESR values that lie on the stability boundary in 

the ESR tunnel graph. Figure 6(a) shows the ESR tunnel graph obtained from manual VR characterization, 

which also serves as the benchmark. For each load current and ESR, the circle mark represents the stable VR 

output, whereas the cross mark indicates instability. A clear boundary exists between stable and unstable 

regions at low load current and high ESR. In detail, the undershoot values in the unstable region are higher 

than those in the stable region. This undershoot distribution is depicted in Figure 6(b). 
 

 

  
 

(a) 

(b) 

Figure 6. (a) ESR tunnel graph of manual VR characterization (b) Undershoot distribution 

 

 

Furthermore, the outcome of manual VR characterization indicates that each load current has a 

unique critical ESR. For example, Figure 6(a) shows that the critical ESR for a load current of 0.1 A resides 

between 45 Ω and 50 Ω, which is the critical ESR range for that particular load current. Then, the ESR values 

were refined in this critical ESR range to determine the actual critical ESR for each load current. In 

particular, the ESR was refined with 1 Ω increment compared with 5 Ω in the initial manual VR 

characterization. 

 

3.2. NN-based VR Characterization Results 

 After completing manual VR characterization, the NN-based VR characterization was conducted. 

All VR output undershoot values were predicted using the trained NN with a reduced number of datasets. 

The training dataset was originally extracted from the results of manual VR characterization. Figure 7(a) 

displays the ESR tunnel graph of NN-based VR characterization, which has a similar pattern to that of 

manual VR characterization, as depicted in Figure 6(a). The most important outcome is the predicted critical 

ESR based on the NN approach. For example, Figure 7(a) depicts that the critical ESR for a load current of 

0.1 A is located between 45 Ω and 50 Ω. This critical ESR range is equivalent to that in manual VR 

characterization shown in Figure 6(a). The predicted ESR for a load current of 0.1 A is 46 Ω instead of 47 Ω 

in manual characterization. Subsequently, this ESR value was simulated in LTspice for undershoot 

verification purpose. The LTspice simulation result shows that, the undershoot is 0.1012 V. Meanwhile, the 

predicted undershoot in NN-based VR characterization is 0.1199 V. Thus, both undershoot values are similar 

and acceptable. 
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(a) (b) 

 

Figure 7. (a) ESR tunnel graph of NN-based VR characterization (b) Critical ESR comparison between 

manual and NN-based VR characterization 

 

 

In addition, Figure 7(b) shows the critical ESR comparison between manual and NN-based VR 

characterization for a dataset reduction factor of 1. In this work, five performance metrics were used to 

evaluate the predicted critical ESR performance, namely mean squared error (MSE), root mean squared error 

(RMSE), mean absolute error (MAE), correlation coefficient (R2) and relative error (RE) based on the 

following equations, 

 

MSE =
1

N
∑ [y(i) − yp(i)]

2N
i=1        (3) 

 

RMSE = √
1

N
∑ [y(i) − yp(i)]

2N
i=1        (4) 

 

MAE =
1

N
∑ |y(i) − yp(i)|
N
i=1        (5) 

 

R2 =
∑ [(y(i)−y̅(i))(yp(i)−yp̅̅ ̅̅ (i))]
N
i=1

√∑ [y(i)−y̅(i)]2N
i=1 ∑ [yp(i)−yp̅̅ ̅̅ (i)]

2N
i=1

      (6) 

 

RE = (
y(i)−yp(i)

y(i)
) × 100        (7) 

 

where y and yp are the actual and predicted critical ESR, N is the number of observations and i is 

the load current instant. The computed MSE, RMSE and MAE are 2.4444, 1.5635 and 0.8889, respectively. 

Meanwhile, the computed R2 is 0.9985 which is close to one and it indicates good critical ESR prediction. 

Furthermore, RE, which measures the relative accuracy, has a mean value of 1.2891%, with maximum RE of 

4.0404% for a load current of 0.25 A. The maximum RE is set to 5% in this work. Based on these outcomes, 

the output capacitor ESR must be less than 46 Ω to ensure a stable VR circuit operation.  

 

3.3. Best NN Configuration Results 

 Critical ESR prediction results with good accuracy were obtained after defining the best 

configuration of NN structure and dataset reduction factor. Firstly, the overall data distribution based on the 

NN training function was analyzed. Three types of NN training function options were used in this work; 

namely, Bayesian regularization (BR), Levenberg-Marquardt and scaled conjugate gradient backpropagation 

functions. BR training function was selected since it has the lowest MSE of undershoot prediction at 0.99 

x10-3. Next, the best NN input combination was analyzed. Input combination option 3 produced the 

minimum MSE at 3.52 x 10-3. Then, the best number of hidden nodes was also selected among 5, 10, 15 and 

20 nodes. In this work, 15 hidden nodes generated the smallest MSE of 6.11 x 10-3. In addition, the best 

dataset reduction factor among factor of 1, 2 or 3, was selected with factor of 1 generated the smallest MSE 

at 7.26 x 10-3. Afterward, the maximum dataset reduction factor was inspected based on the critical ESR 

prediction error for factor of 1, 2, 3 and 4, where factor of 3 was the best configuration. This result indicates 

that NN-based VR characterization reduced the data that are required to be manually acquired up to 53%. 
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3.4. Characterization Time Comparison 

The total characterization time was also compared. The total manual characterization time, tmanual 

was the total time taken to complete characterizing the VR for all combination of IOUT and ESR values. In 

detail, the time taken for each combination of IOUT and ESR including the process to run both MATLAB and 

LTspice, starting from the circuit netlist file generation until plotting the ESR tunnel graph and determining 

the critical ESR values. Meanwhile, the total NN-based characterization time, tNN−based included the time 

taken to generate the reduced number of manual characterization datasets. Furthermore, tNN−based also 

comprises of the time taken to complete all subsequent processes including the NN training, VR output 

voltage undershoot estimation based on the trained NN structure, VR stability judgement, ESR tunnel graph 

plotting and finally critical ESR determination. The total characterization time reduction, treduction was 

computed as follows, 

 

treduction = (
tmanual−tNN−based

tmanual
) × 100      (8) 

 

In this work, the manual characterization process took 4,832 s to complete, while NN-based 

approach only needs 2,293 s to produce a similar result. Therefore, the total characterization time was 

reduced by 52.6% and furthermore indicates that the NN-based approach was an efficient VR 

characterization technique. 

 

 

4. CONCLUSION 

An efficient method for predicting the critical ESR and its corresponding undershoot using NN 

during VR characterization was investigated in this work. This work has developed a method using 

multilayer NN approach to predict the undershoot and subsequently estimate the stable ESR range in the ESR 

tunnel graph. Based on the predicted stable ESR range, the critical ESR for each load current has been 

predicted with good accuracy, even with reduced number of dataset. All results obtained show that the NN-

based approach is an efficient and effective VR characterization in terms of ESR of output capacitor. 
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